Characterization of Matrix $K$-Positivity Preserver for $K=\mathbb{R}^n$ and for Compact Sets $K\subseteq\mathbb{R}^n$
Abstract
For any closed $K\subseteq\mathbb{R}^n$, in [P.\ J.\ di\,Dio, K.\ Schmüdgen: $K$-Positivity Preserver and their Generators, SIAM J.\ Appl.\ Algebra Geom.\ 9 (2025), 794--824] all $K$-positivity preserver have been characterized, i.e., all linear maps $T:\mathbb{R}[x_1,\dots,x_n]\to\mathbb{R}[x_1,\dots,x_n]$ such that $Tp\geq 0$ on $K$ for all $p\geq 0$ on $K$. An important extension of polynomials $\mathbb{R}[x_1,\dots,x_n]$ with real coefficients are polynomials $\mathbb{R}^{m\times m}[x_1,\dots,x_n]$ with matrix coefficients. Non-negativity on $K$ for matrix polynomials with Hermitian coefficients $\mathrm{Herm}_m$ is then $p(x)\succeq 0$ for all $x\in K$. In the current work, we investigate linear maps $T:\mathrm{Herm}_m[x_1,\dots,x_n]\to\mathrm{Herm}_m[x_1,\dots,x_n]$. We focus on matrix $K$-positivity preserver, i.e., $Tp\succeq 0$ on $K$ for all $p\succeq 0$ on $K$. For $K=\mathbb{R}^n$ and compact sets $K\subseteq\mathrm{R}^n$, we give characterizations of matrix $K$-positivity preservers. We discuss the difference between the real and the matrix coefficient case and where our proof fails for general sets $K\subseteq\mathbb{R}^n$ with $K\neq \mathbb{R}^n$ and $K$ non-compact.
Links & Resources
Authors
Cite This Paper
Dio, P. J. d., Langer, L. (2025). Characterization of Matrix $K$-Positivity Preserver for $K=\mathbb{R}^n$ and for Compact Sets $K\subseteq\mathbb{R}^n$. arXiv preprint arXiv:2512.22584.
Philipp J. di Dio and Lars-Luca Langer. "Characterization of Matrix $K$-Positivity Preserver for $K=\mathbb{R}^n$ and for Compact Sets $K\subseteq\mathbb{R}^n$." arXiv preprint arXiv:2512.22584 (2025).